Monday, 29 August 2016

How to use Social Media Scraping to be your Competitors’ Nightmare

How to use Social Media Scraping to be your Competitors’ Nightmare

Big data and competitive intelligence have been in the limelight for quite some time now. The almost magical power of big data to help a company make just the right decisions have been talked about a lot. When it comes to big data, the kind of benefits that a business can get totally depends upon the sources they acquire it from. Social media is one of the best sources from where you can get data that helps your business in a multitude of ways. Now that every business is deep rooted on the internet, social media data becomes all the more relevant and crucial. Here is how you can use data scraped from social media sites to get an edge in the competition.

Keeping watch on your competitors

Social media is the best place to watch your competitors’ activity and take counter initiatives to keep up or take over them. If you want to know what your competitors are up to, a social media scraping setup for scraping the posts that mention your competitors’ brand/product names can do the trick. This can also be used to learn a thing or two from their activities on social media so that you can take respective measures to stay ahead of them. For example, you could know if your competitor is running a special promotional offer at the moment and come up with something better than theirs to keep up. This can do wonders if you are in a highly competitive industry like Ecommerce where the competition is intense. If you are not using some help from web scraping technology to keep a close watch on your competitors, you could easily get left over in this fast-paced business scene.

Solving customer issues at the earliest

Customers are vocal about their experience with different products and services on social media sites these days. If you have a customer whose issue was left unsolved, there is a good chance that he/she will take it to the social media to vent the frustration. Watching out for such instances and giving them prompt support should be something you should do if you want to retain these customers and stop them from ruining your brand’s image. By scraping social media sites for posts that mention your product/service, you can easily find out if there are such grievances from customers. This can make sure to an extent that you don’t let unhappy customers stay that way, which eventually hurts your business in the long run. Customers can make or break your company, so using social media scraping to serve the customers better can help you succeed eventually.

Sentiment analysis

Social media data can play a good job at helping you understand user sentiments. With the help of social media scraping, a business can get the big picture about general perception of their brand by their users. This can go a long way since this level of feedback can help you fix unnoticed issues with your company and service quickly. By rectifying them, you can make your brand more appealing to the customers. Sentiment analysis will provide you with the opportunity to transform your business into how customers want it to be. Social media scraping is the one and only way to have access to this user sentiment data which can help you optimize your business for the customers.

Web crawling for social media data

When social media data possess so much value to businesses, it makes sense to look for efficient ways to gather and use this data. Manually scrolling through millions of tweets doesn’t make sense, this is why you should use social media scraping to aggregate the relevant data for your business. Besides, web scraping technologies make it possible to handle huge amounts of data with ease. Since the size of data is huge when it comes to business related requirements, web scraping is the only scalable solution worth considering. To make things even simpler, there are reliable web scraping solutions that offer social media scraping services for brand monitoring.

Bottom line

Since social media has become an integral part of online businesses, the data available on these sites possess immense value to companies in every industry. Social media scraping can be used for brand monitoring and gaining competitive intelligence that can be used to optimize your business model for maximum effectiveness. This will in turn make your company stand out from the competition and the added advantage of insights gained from social media data will help you to take over your competitors.

Source: https://www.promptcloud.com/blog/social-media-scraping-for-competitive-intelligence

Monday, 22 August 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416

Saturday, 20 August 2016

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence & Data Warehousing in a Business Perspective

Business Intelligence

Business Intelligence has become a very important activity in the business arena irrespective of the domain due to the fact that managers need to analyze comprehensively in order to face the challenges.

Data sourcing, data analysing, extracting the correct information for a given criteria, assessing the risks and finally supporting the decision making process are the main components of BI.

In a business perspective, core stakeholders need to be well aware of all the above stages and be crystal clear on expectations. The person, who is being assigned with the role of Business Analyst (BA) for the BI initiative either from the BI solution providers' side or the company itself, needs to take the full responsibility on assuring that all the above steps are correctly being carried out, in a way that it would ultimately give the business the expected leverage. The management, who will be the users of the BI solution, and the business stakeholders, need to communicate with the BA correctly and elaborately on their expectations and help him throughout the process.

Data sourcing is an initial yet crucial step that would have a direct impact on the system where extracting information from multiple sources of data has to be carried out. The data may be on text documents such as memos, reports, email messages, and it may be on the formats such as photographs, images, sounds, and they can be on more computer oriented sources like databases, formatted tables, web pages and URL lists. The key to data sourcing is to obtain the information in electronic form. Therefore, typically scanners, digital cameras, database queries, web searches, computer file access etc, would play significant roles. In a business perspective, emphasis should be placed on the identification of the correct relevant data sources, the granularity of the data to be extracted, possibility of data being extracted from identified sources and the confirmation that only correct and accurate data is extracted and passed on to the data analysis stage of the BI process.

Business oriented stake holders guided by the BA need to put in lot of thought during the analyzing stage as well, which is the second phase. Synthesizing useful knowledge from collections of data should be done in an analytical way using the in-depth business knowledge whilst estimating current trends, integrating and summarizing disparate information, validating models of understanding, and predicting missing information or future trends. This process of data analysis is also called data mining or knowledge discovery. Probability theory, statistical analysis methods, operational research and artificial intelligence are the tools to be used within this stage. It is not expected that business oriented stake holders (including the BA) are experts of all the above theoretical concepts and application methodologies, but they need to be able to guide the relevant resources in order to achieve the ultimate expectations of BI, which they know best.

Identifying relevant criteria, conditions and parameters of report generation is solely based on business requirements, which need to be well communicated by the users and correctly captured by the BA. Ultimately, correct decision support will be facilitated through the BI initiative and it aims to provide warnings on important events, such as takeovers, market changes, and poor staff performance, so that preventative steps could be taken. It seeks to help analyze and make better business decisions, to improve sales or customer satisfaction or staff morale. It presents the information that manager's need, as and when they need it.

In a business sense, BI should go several steps forward bypassing the mere conventional reporting, which should explain "what has happened?" through baseline metrics. The value addition will be higher if it can produce descriptive metrics, which will explain "why has it happened?" and the value added to the business will be much higher if predictive metrics could be provided to explain "what will happen?" Therefore, when providing a BI solution, it is important to think in these additional value adding lines.

Data warehousing

In the context of BI, data warehousing (DW) is also a critical resource to be implemented to maximize the effectiveness of the BI process. BI and DW are two terminologies that go in line. It has come to a level where a true BI system is ineffective without a powerful DW, in order to understand the reality behind this statement, it's important to have an insight in to what DW really is.

A data warehouse is one large data store for the business in concern which has integrated, time variant, non volatile collection of data in support of management's decision making process. It will mainly have transactional data which would facilitate effective querying, analyzing and report generation, which in turn would give the management the required level of information for the decision making.

The reasons to have BI together with DW

At this point, it should be made clear why a BI tool is more effective with a powerful DW. To query, analyze and generate worthy reports, the systems should have information available. Importantly, transactional information such as sales data, human resources data etc. are available normally in different applications of the enterprise, which would obviously be physically held in different databases. Therefore, data is not at one particular place, hence making it very difficult to generate intelligent information.

The level of reports expected today, are not merely independent for each department, but managers today want to analyze data and relationships across the enterprise so that their BI process is effective. Therefore, having data coming from all the sources to one location in the form of a data warehouse is crucial for the success of the BI initiative. In a business viewpoint, this message should be passed and sold to the managements of enterprises so that they understand the value of the investment. Once invested, its gains could be achieved over several years, in turn marking a high ROI.

Investment costs for a DW in the short term may look quite high, but it's important to re-iterate that the gains are much higher and it will span over many years to come. It also reduces future development cost since with the DW any requested report or view could be easily facilitated. However, it is important to find the right business sponsor for the project. He or she needs to communicate regularly with executives to ensure that they understand the value of what's being built. Business sponsors need to be decisive, take an enterprise-wide perspective and have the authority to enforce their decisions.

Process

Implementation of a DW itself overlaps with some phases of the above explained BI process and it's important to note that in a process standpoint, DW falls in to the first few phases of the entire BI initiative. Gaining highly valuable information out of DW is the latter part of the BI process. This can be done in many ways. DW can be used as the data repository of application servers that run decision support systems, management Information Systems, Expert systems etc., through them, intelligent information could be achieved.

But one of the latest strategies is to build cubes out of the DW and allow users to analyze data in multiple dimensions, and also provide with powerful analytical supporting such as drill down information in to granular levels. Cube is a concept that is different to the traditional relational 2-dimensional tabular view, and it has multiple dimensions, allowing a manager to analyze data based on multiple factors, and not just two factors. On the other hand, it allows the user to select whatever the dimension he wish to choose for analyzing purposes and not be limited by one fixed view of data, which is called as slice & dice in DW terminology.

BI for a serious enterprise is not just a phase of a computerization process, but it is one of the major strategies behind the entire organizational drivers. Therefore management should sit down and build up a BI strategy for the company and identify the information they require in each business direction within the enterprise. Given this, BA needs to analyze the organizational data sources in order to build up the most effective DW which would help the strategized BI process.

High level Ideas on Implementation

At the heart of the data warehousing process is the extract, transform, and load (ETL) process. Implementation of this merely is a technical concern but it's a business concern to make sure it is designed in such a way that it ultimately helps to satisfy the business requirements. This process is responsible for connecting to and extracting data from one or more transactional systems (source systems), transforming it according to the business rules defined through the business objectives, and loading it into the all important data model. It is at this point where data quality should be gained. Of the many responsibilities of the data warehouse, the ETL process represents a significant portion of all the moving parts of the warehousing process.

Creation of a powerful DW depends on the correctness of data modeling, which is the responsibility of the database architect of the project, but BA needs to play a pivotal role providing him with correct data sources, data requirements and most importantly business dimensions. Business Dimensional modeling is a special method used for DW projects and this normally should be carried out by the BA and from there onwards technical experts should take up the work. Dimensions are perspectives specific to a business that could be used for analysis purposes. As an example, for a sales database, the dimensions could include Product, Time, Store, etc. Obviously these dimensions differ from one business to another and hence for each DW initiative those dimensions should be correctly identified and that could be very well done by a person who has experience in the DW domain and understands the business as well, making it apparent that DW BA is the person responsible.

Each of the identified dimensions would be turned in to a dimension table at the implementation phase, and the objective of the above explained ETL process is to fill up these dimension tables, which in turn will be taken to the level of the DW after performing some more database activities based on a strong underlying data model. Implementation details are not important for a business stakeholder but being aware of high level process to this level is important so that they are also on the same pitch as that of the developers and can confirm that developers are actually doing what they are supposed to do and would ultimately deliver what they are supposed to deliver.

Security is also vital in this regard, since this entire effort deals with highly sensitive information and identification of access right to specific people to specific information should be correctly identified and captured at the requirements analysis stage.

Advantages

There are so many advantages of BI system. More presentation of analytics directly to the customer or supply chain partner will be possible. Customer scores, customer campaigns and new product bundles can all be produced from analytic structures resulting in high customer retention and creation of unique products. More collaboration within information can be achieved from effective BI. Rather than middle managers getting great reports and making their own areas look good, information will be conveyed into other functions and rapidly shared to create collaborative decisions increasing the efficiency and accuracy. The return on human capital will be greatly increased.

Managers at all levels will save their time on data analysis, and hence saving money for the enterprise, as the time of managers is equal to money in a financial perspective. Since powerful BI would enable monitoring internal processes of the enterprises more closely and allow making them more efficient, the overall success of the organization would automatically grow. All these would help to derive a high ROI on BI together with a strong DW. It is a common experience to notice very high ROI figures on such implementations, and it is also important to note that there are many non-measurable gains whilst we consider most of the measurable gains for the ROI calculation. However, at a stage where it is intended to take the management buy-in for the BI initiative, it's important to convert all the non measurable gains in to monitory values as much as possible, for example, saving of managers time can be converted in to a monitory value using his compensation.

The author has knowledge in both Business and IT. Started career as a Software Engineer and moved to work in the business analysis area of a premier US based software company.

Source: http://ezinearticles.com/?Business-Intelligence-and-Data-Warehousing-in-a-Business-Perspective&id=35640

Tuesday, 9 August 2016

How to Scrape a Website into Excel without programming

How to Scrape a Website into Excel without programming

This web scraping tutorial will teach you visually step by step how to scrape or extract or pull data from websites using import.io(Free Tool) without programming skills into Excel.

Personally, I use web scraping for analysing my competitors’ best-performing blog posts or content such as what blog posts or content received most comments or social media shares.

In this tutorial,We will scrape the following data from a blog:

    All blog posts URLs.
    Authors names for each post.
    Blog posts titles.
    The number of social media shares each post received.

Then we will use the extracted data to determine what are the popular blog posts and their authors,which posts received much engagement from users through social media shares and on page comments.

Let’s get started.

Step 1:Install import.io app

The first step is to install import.io app.A free web scraping tool and one of the best web scraping software.It is available for Windows,Mac and Linux platforms.Import.io offers advanced data extraction features without coding by allowing you to create custom APIs or crawl entire websites.

After installation, you will need to sign up for an account.It is completely free so don’t worry.I will not cover the installation process.Once everything is set correctly you will see something similar to the window below after your first login.

Step 2:Choose how to scrape data using import.io extractor

With import.io you can do data extraction by creating custom APIs or crawling the entire websites.It comes equipped with different tools for data extraction such as magic,extractor,crawler and connector.

In this tutorial,I will use a tool called “extractor” to create a custom API for our data extraction process.

To get started click the “new” red button on the right top of the page and then click “Start Extractor” button on the pop-up window.

After clicking  “Start Extractor” the Import.io app internal browser window will open as shown below.

Step 3:Data scraping process

Now after the import.io browser is open navigate to the blog URL you want to scrape data from. Then once you already navigated to the target blog URL turn on extraction.In this tutorial,I will use this blog URL bongo5.com  for data extraction.

You can see from the window below I already navigated to www.bongo5.com but extraction switch is still off.

Turn extraction switch “ON” as shown in the window below and move to the next step.

Step 4:Training the “columns” or specifying the data we want to scrape

In this step,I will specify exactly what kind of data I want to scrape from the blog.On import.io app specifying the data you want to scrape is referred to as “training the columns”.Columns represent the data set I want to scrape(post titles,authors’ names and posts URLs).

In order to understand this step, you need to know the difference between a blog page and a blog post.A page might have a single post or multiple posts depending on the blog configuration.

A blog might have several blog posts,even hundreds or thousands of posts.But I will take only one session to train the “extractor” about the data I want to extract.I will do so by using an import.io visual highlighter.Once the data extraction is turned on the-the highlighter will appear by default.

I will do the training session for a single post in a single blog page with multiple posts then the extractor will extract data automatically for the remaining posts on the “same” blog page.
Step 4a:Creating “post_title” column

I will start by renaming “my_column” into the name of the data I want to scrape.Our goal in this tutorial is to scrape the blog posts titles,posts URLs,authors names and get social statistics later so I will create columns for posts titles,posts URLs,authors names.Later on, I will teach you how to get social statistics for the post URLs.

After editing “my_column” into “post_title” then point the mouse cursor over to any of the Posts title on the same blog page and the visual highlighter will automatically appear.Using the highlighter I can select the data I want to extract.

You can see below I selected one of the blog post titles on the page.The rectangular box with orange border is the visual highlighter.

The app will ask you how is the data arranged on the page.Since I have more than one post in a single page then you have rows of repeating data.This blog is having 25 posts per page.So you will select “many rows”.Sometimes you might have a single post on a page for that case you need to select “Just one row”.

Source: http://nocodewebscraping.com/web-scraping-for-dummies-tutorial-with-import-io-without-coding/

Thursday, 4 August 2016

Three Common Methods For Web Data Extraction

Three Common Methods For Web Data Extraction

Probably the most common technique used traditionally to extract data from web pages this is to cook up some regular expressions that match the pieces you want (e.g., URL's and link titles). Our screen-scraper software actually started out as an application written in Perl for this very reason. In addition to regular expressions, you might also use some code written in something like Java or Active Server Pages to parse out larger chunks of text. Using raw regular expressions to pull out the data can be a little intimidating to the uninitiated, and can get a bit messy when a script contains a lot of them. At the same time, if you're already familiar with regular expressions, and your scraping project is relatively small, they can be a great solution.

Other techniques for getting the data out can get very sophisticated as algorithms that make use of artificial intelligence and such are applied to the page. Some programs will actually analyze the semantic content of an HTML page, then intelligently pull out the pieces that are of interest. Still other approaches deal with developing "ontologies", or hierarchical vocabularies intended to represent the content domain.

There are a number of companies (including our own) that offer commercial applications specifically intended to do screen-scraping. The applications vary quite a bit, but for medium to large-sized projects they're often a good solution. Each one will have its own learning curve, so you should plan on taking time to learn the ins and outs of a new application. Especially if you plan on doing a fair amount of screen-scraping it's probably a good idea to at least shop around for a screen-scraping application, as it will likely save you time and money in the long run.

So what's the best approach to data extraction? It really depends on what your needs are, and what resources you have at your disposal. Here are some of the pros and cons of the various approaches, as well as suggestions on when you might use each one:

Raw regular expressions and code

Advantages:

- If you're already familiar with regular expressions and at least one programming language, this can be a quick solution.

- Regular expressions allow for a fair amount of "fuzziness" in the matching such that minor changes to the content won't break them.

- You likely don't need to learn any new languages or tools (again, assuming you're already familiar with regular expressions and a programming language).

- Regular expressions are supported in almost all modern programming languages. Heck, even VBScript has a regular expression engine. It's also nice because the various regular expression implementations don't vary too significantly in their syntax.

Disadvantages:

- They can be complex for those that don't have a lot of experience with them. Learning regular expressions isn't like going from Perl to Java. It's more like going from Perl to XSLT, where you have to wrap your mind around a completely different way of viewing the problem.

- They're often confusing to analyze. Take a look through some of the regular expressions people have created to match something as simple as an email address and you'll see what I mean.

- If the content you're trying to match changes (e.g., they change the web page by adding a new "font" tag) you'll likely need to update your regular expressions to account for the change.

- The data discovery portion of the process (traversing various web pages to get to the page containing the data you want) will still need to be handled, and can get fairly complex if you need to deal with cookies and such.

When to use this approach: You'll most likely use straight regular expressions in screen-scraping when you have a small job you want to get done quickly. Especially if you already know regular expressions, there's no sense in getting into other tools if all you need to do is pull some news headlines off of a site.

Ontologies and artificial intelligence

Advantages:

- You create it once and it can more or less extract the data from any page within the content domain you're targeting.

- The data model is generally built in. For example, if you're extracting data about cars from web sites the extraction engine already knows what the make, model, and price are, so it can easily map them to existing data structures (e.g., insert the data into the correct locations in your database).

- There is relatively little long-term maintenance required. As web sites change you likely will need to do very little to your extraction engine in order to account for the changes.

Disadvantages:

- It's relatively complex to create and work with such an engine. The level of expertise required to even understand an extraction engine that uses artificial intelligence and ontologies is much higher than what is required to deal with regular expressions.

- These types of engines are expensive to build. There are commercial offerings that will give you the basis for doing this type of data extraction, but you still need to configure them to work with the specific content domain you're targeting.

- You still have to deal with the data discovery portion of the process, which may not fit as well with this approach (meaning you may have to create an entirely separate engine to handle data discovery). Data discovery is the process of crawling web sites such that you arrive at the pages where you want to extract data.

When to use this approach: Typically you'll only get into ontologies and artificial intelligence when you're planning on extracting information from a very large number of sources. It also makes sense to do this when the data you're trying to extract is in a very unstructured format (e.g., newspaper classified ads). In cases where the data is very structured (meaning there are clear labels identifying the various data fields), it may make more sense to go with regular expressions or a screen-scraping application.

Screen-scraping software

Advantages:

- Abstracts most of the complicated stuff away. You can do some pretty sophisticated things in most screen-scraping applications without knowing anything about regular expressions, HTTP, or cookies.

- Dramatically reduces the amount of time required to set up a site to be scraped. Once you learn a particular screen-scraping application the amount of time it requires to scrape sites vs. other methods is significantly lowered.

- Support from a commercial company. If you run into trouble while using a commercial screen-scraping application, chances are there are support forums and help lines where you can get assistance.

Disadvantages:

- The learning curve. Each screen-scraping application has its own way of going about things. This may imply learning a new scripting language in addition to familiarizing yourself with how the core application works.

- A potential cost. Most ready-to-go screen-scraping applications are commercial, so you'll likely be paying in dollars as well as time for this solution.

- A proprietary approach. Any time you use a proprietary application to solve a computing problem (and proprietary is obviously a matter of degree) you're locking yourself into using that approach. This may or may not be a big deal, but you should at least consider how well the application you're using will integrate with other software applications you currently have. For example, once the screen-scraping application has extracted the data how easy is it for you to get to that data from your own code?

When to use this approach: Screen-scraping applications vary widely in their ease-of-use, price, and suitability to tackle a broad range of scenarios. Chances are, though, that if you don't mind paying a bit, you can save yourself a significant amount of time by using one. If you're doing a quick scrape of a single page you can use just about any language with regular expressions. If you want to extract data from hundreds of web sites that are all formatted differently you're probably better off investing in a complex system that uses ontologies and/or artificial intelligence. For just about everything else, though, you may want to consider investing in an application specifically designed for screen-scraping.

As an aside, I thought I should also mention a recent project we've been involved with that has actually required a hybrid approach of two of the aforementioned methods. We're currently working on a project that deals with extracting newspaper classified ads. The data in classifieds is about as unstructured as you can get. For example, in a real estate ad the term "number of bedrooms" can be written about 25 different ways. The data extraction portion of the process is one that lends itself well to an ontologies-based approach, which is what we've done. However, we still had to handle the data discovery portion. We decided to use screen-scraper for that, and it's handling it just great. The basic process is that screen-scraper traverses the various pages of the site, pulling out raw chunks of data that constitute the classified ads. These ads then get passed to code we've written that uses ontologies in order to extract out the individual pieces we're after. Once the data has been extracted we then insert it into a database.

Source: http://ezinearticles.com/?Three-Common-Methods-For-Web-Data-Extraction&id=165416